pymarl3-feudal/doc/README(old-version).md
2025-01-08 18:39:17 +08:00

129 lines
13 KiB
Markdown

# API: Boosting Multi-Agent Reinforcement Learning via Agent-Permutation-Invariant Networks
Open-source code for [API: Boosting Multi-Agent Reinforcement Learning via Agent-Permutation-Invariant Networks](https://arxiv.org/abs/xxxxx).
[TOC]
## 1. Motivation
### 1.1 Permutation Invariance and Equivariance
**Permutation Invariant Function.** A function ![](http://latex.codecogs.com/svg.latex?f:X\rightarrow\text{Y}) where ![](http://latex.codecogs.com/svg.latex?X=\left[x_1,x_2,\ldots\text{}x_m\right]^\mathsf{T}) of size ![](http://latex.codecogs.com/svg.latex?\(m,k\)) is a set consisting of ![](http://latex.codecogs.com/svg.latex?m) components (each of which is of dimension ![](http://latex.codecogs.com/svg.latex?k)), is said to be permutation invariant if permutation of input components does not change the output of the function. Mathematically, ![](http://latex.codecogs.com/svg.latex?f(\left[x_1,x_2,\ldots\text{}x_m\right]^\mathsf{T})=f(M\left[x_1,x_2,\ldots\text{}x_m\right]^\mathsf{T})), where ![](http://latex.codecogs.com/svg.latex?M) is the permutation matrix of size ![](http://latex.codecogs.com/svg.latex?\(m,m\)), which is a binary matrix that has exactly a single unit value in every row and column and zeros everywhere else.
**Permutation Equivariant Function.** Similarly, a function ![](http://latex.codecogs.com/svg.latex?f:X\rightarrow\text{Y}) is permutation equivariant if permutation of input components permutes the output components with the same permutation ![](http://latex.codecogs.com/svg.latex?M). Mathematically, ![](http://latex.codecogs.com/svg.latex?f(M\left[x_1,x_2,\ldots\text{}x_m\right]^\mathsf{T})=M\left[y_1,y_2,\ldots\text{}y_m\right]^\mathsf{T}).
### 1.2 Why Permutation Invariant Matters?
In MARL, the environments typically consist of ![](http://latex.codecogs.com/svg.latex?m) components, including ![](http://latex.codecogs.com/svg.latex?n) learning agents and ![](http://latex.codecogs.com/svg.latex?m-n) non-player characters. Therefore, the states, observations are factorizable as sets of ![](http://latex.codecogs.com/svg.latex?m) components ![](http://latex.codecogs.com/svg.latex?\left\[x_1,\ldots\text{}x_m\right\]), where each component ![](http://latex.codecogs.com/svg.latex?x_i) represents an atomic semantic meaning (e.g., agent ![](http://latex.codecogs.com/svg.latex?i)'s features) whose dimension is ![](http://latex.codecogs.com/svg.latex?k). Because shuffling the order of ![](http://latex.codecogs.com/svg.latex?m) components does not change the information of the set, one would expect many functions, e.g., the policy function ![](http://latex.codecogs.com/svg.latex?\pi_i(a_i|o_i)), possess permutation invariance and permutation equivariance. These properties can be exploited to design more efficient MARL algorithms, especially when the ![](http://latex.codecogs.com/svg.latex?m) components are homogeneous, i.e., semantically identical (belonging to the same type, having identical feature spaces, action spaces and reward functions).
Taking ![](http://latex.codecogs.com/svg.latex?Q_i(a_i|o_i)) as an example, the input is the observation ![](http://latex.codecogs.com/svg.latex?o_i=\left[x_1,\ldots\text{}x_m\right]), and the outputs are Q-values of all actions in ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i). Since the ![](http://latex.codecogs.com/svg.latex?m) components are homogeneous, they have the same feature space, i.e., ![](http://latex.codecogs.com/svg.latex?\forall\text{}x_i\in\mathcal{X}). Thus, the size of an **fixedly ordered representation** of ![](http://latex.codecogs.com/svg.latex?o_i) is ![](http://latex.codecogs.com/svg.latex?|\mathcal{X}|^m). In contrast, using a **permutation invariant representation**, i.e., removing the influence of the input order, could reduce the size of the observation space by a factor of ![](http://latex.codecogs.com/svg.latex?\frac{1}{m!}). As the number of homogeneous components increases, the removal of these redundancies results in a much smaller search space, upon which we could more easily learn a policy.
Our objective is to design more flexible **Agent Permutation Invariant** (**API**) and **Agent Permutation Equivariant** (**APE**) models to greatly reduce the sample complexity of MARL algorithms. Also taking ![](http://latex.codecogs.com/svg.latex?Q_i(a_i|o_i)) as the example, if there is a direct correspondence between the action Q-value in output and the component in input ![](http://latex.codecogs.com/svg.latex?o_i), then ![](http://latex.codecogs.com/svg.latex?Q_i(a_i|o_i)) for these actions should be permutation equivariant; otherwise, ![](http://latex.codecogs.com/svg.latex?Q_i(a_i|o_i)) should be permutation invariant.
<img src="./figure/API_APE_function.png" alt="API_APE_function" style="zoom:50%;" />
Note that this is very common for many multi-agent settings. For example, as illustrated in the above Figure, in the challenging [StarCraft II micromanagement benchmark (SMAC)](https://github.com/oxwhirl/smac), the input set ![](http://latex.codecogs.com/svg.latex?o_i=\left[x_1,\ldots\text{}x_m\right]) could be divided into 2 groups: an ally group ![](http://latex.codecogs.com/svg.latex?o_i^{\text{ally}}) and an enemy group ![](http://latex.codecogs.com/svg.latex?o_i^{\text{enemy}}). The output Q-values of the actions could be divided into 2 groups as well: Q-values for move actions ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{move}), i.e., ![](http://latex.codecogs.com/svg.latex?\left[\text{noop},\text{stop},\uparrow,\rightarrow,\downarrow,\leftarrow\right]), and attack actions ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{attack}). Since there is a one-to-one correspondence between the elements in ![](http://latex.codecogs.com/svg.latex?o_i^{\text{enemy}}) and ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{attack}), the Q-values of ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{attack}) should be equivariant to the permutations of ![](http://latex.codecogs.com/svg.latex?o_i^{\text{enemy}}), while the Q-values of ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{move}) should be invariant to the permutations of the whole set ![](http://latex.codecogs.com/svg.latex?o_i). Overall, a desired model of ![](http://latex.codecogs.com/svg.latex?Q_i(o_i)) should be both permutation invariant and permutation equivariance.
## 2. Model Architecture of API-HyPerNetwork (API-HPN)
![Agent permutation invariant network with hypernetworks](./figure/API-HPN.png)
API-HPN incorporates [hypernetworks](https://arxiv.org/pdf/1609.09106) to generate different weights ![](http://latex.codecogs.com/svg.latex?W_i)s for different input components ![](http://latex.codecogs.com/svg.latex?x_i)s to improve representational capacity while ensuring the same ![](http://latex.codecogs.com/svg.latex?x_i) always be assigned with the same weight ![](http://latex.codecogs.com/svg.latex?W_i). The architecture of our API-HPN is shown in the above Figure (b). We also take the ![](http://latex.codecogs.com/svg.latex?Q_i(o_i)) as an example. The model mainly composes of two modules:
**Agent Permutation Invariant Input Layer.** [hypernetworks](https://arxiv.org/pdf/1609.09106) are a family of neural architectures which use one network, known as hypernetwork, to generate the weights for another network. In our setting, the hypernetwork is utilized to generate a different ![](http://latex.codecogs.com/svg.latex?W_i) for each ![](http://latex.codecogs.com/svg.latex?x_i) of the input set ![](http://latex.codecogs.com/svg.latex?X_j). As shown in above Figure (b), ![](http://latex.codecogs.com/svg.latex?X_j) (which can be viewed as a batch of ![](http://latex.codecogs.com/svg.latex?m) ![](http://latex.codecogs.com/svg.latex?x_i)s each of which is of dimension ![](http://latex.codecogs.com/svg.latex?k), represented by different shades of blue) is firstly fed into a shared hypernetwork (marked in yellow), whose input size is ![](http://latex.codecogs.com/svg.latex?k) and output size is ![](http://latex.codecogs.com/svg.latex?k*h). Then, the corresponding outputs are reshaped to ![](http://latex.codecogs.com/svg.latex?\[k,h\]) and serve as the submodule weights ![](http://latex.codecogs.com/svg.latex?W_i)s of the normal FC layer (see Figure (a)). Note that different ![](http://latex.codecogs.com/svg.latex?x_i)s will generate different ![](http://latex.codecogs.com/svg.latex?W_i)s and the same ![](http://latex.codecogs.com/svg.latex?x_i) will always correspond to the same ![](http://latex.codecogs.com/svg.latex?W_i). Then, each ![](http://latex.codecogs.com/svg.latex?x_i) is multiplied by ![](http://latex.codecogs.com/svg.latex?W_i) and all multiplication results and the bias ![](http://latex.codecogs.com/svg.latex?b) are summed together to get the output. Since each element ![](http://latex.codecogs.com/svg.latex?x_i) is processed separately by its corresponding ![](http://latex.codecogs.com/svg.latex?W_i) and then merged by a permutation invariant 'sum' function, the permutation invariance is reserved.
**Agent Permutation Equivariance Output Layer.** Similarly, to keep the whole network permutation equivariance, the submodular weights and bias of the agent-related actions in the output layer, e.g., ![](http://latex.codecogs.com/svg.latex?\mathcal{A}_i^\text{attack}) of SMAC, are also generated by a hypernetwork. As mentioned above, the input ![](http://latex.codecogs.com/svg.latex?x_i) and output ![](http://latex.codecogs.com/svg.latex?W_i) of the hypernetwork always correspond one-to-one, so the input order change will result in the same output order change, thus achieving permutation equivariance.
We emphasize that API-HPN is a general design and can be easily integrated into existing MARL algorithms (e.g., [VDN](https://arxiv.org/pdf/1706.05296?ref=https://githubhelp.com), [QMIX](http://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf), [MADDPG](https://proceedings.neurips.cc/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf), [MAPPO](https://arxiv.org/pdf/2103.01955?ref=https://githubhelp.com)) to boost the learning speed as well as the converged performance. All parameters of API-HPN are simply trained end-to-end with backpropagation according to the corresponding RL loss function.
## 3. Experiments
### 3.1 Experimental Setups
We mainly evaluate our methods in the challenging StarCraft II micromanagement benchmark [(SMAC)](https://github.com/oxwhirl/smac).
****
```
StarCraft 2 version: SC2.4.10. difficulty: 7.
```
### 3.2 Evaluation Metric
### 3.3 Code Implementations and Structure
### 3.4 Results
#### 3.4.1 Comparison with previous SOTA
![The Full Comparison of API-HPN with SOTA on SMAC](./figure/exp_comparison_with_SOTA.png)
#### 3.4.2 Comparison with baselines considering permutation invariance and permutation equivariant property
![Comparison with Related Baselines](./figure/exp_comparison_with_baselines.png)
#### 3.4.3 Ablation Studies
![ablation](./figure/exp_ablation.png)
| Senarios | Difficulty | API-QMIX |
|----------------|:----------:|:----------------------------------:|
| 8m_vs_9m | Hard | **100%** |
| 5m_vs_6m | Hard | **100%** |
| 3s_vs_5z | Hard | **100%** |
| bane_vs_bane | Hard | **100%** |
| 2c_vs_64zg | Hard | **100%** |
| corridor | Super Hard | **100%** |
| MMM2 | Super Hard | **100%** |
| 3s5z_vs_3s6z | Super Hard |**100%** |
| 27m_vs_30m | Super Hard | **100%** |
| 6h_vs_8z | Super Hard | **98%** |
## 4. How to use the code?
### 4.1 Detailed Command line tool to reproduce all experimental results
**Run an experiment**
```shell
# For SMAC, take the 5m_vs_6m scenario for example.
CUDA_VISIBLE_DEVICES="0" python src/main.py --config=api_vdn --env-config=sc2 with env_args.map_name=5m_vs_6m obs_agent_id=True obs_last_action=False runner=parallel batch_size_run=8 buffer_size=5000 t_max=10050000 epsilon_anneal_time=100000 batch_size=128 td_lambda=0.6
CUDA_VISIBLE_DEVICES="1" python src/main.py --config=api_qmix --env-config=sc2 with env_args.map_name=5m_vs_6m obs_agent_id=True obs_last_action=False runner=parallel batch_size_run=8 buffer_size=5000 t_max=10050000 epsilon_anneal_time=100000 batch_size=128 td_lambda=0.6
```
The config files act as defaults for an algorithm or environment.
They are all located in `src/config`.
`--config` refers to the config files in `src/config/algs`
`--env-config` refers to the config files in `src/config/envs`
# Citation
```
@article{,
title={API: Boosting Multi-Agent Reinforcement Learning via Agent-Permutation-Invariant Networks},
author={},
year={2022},
eprint={},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```